Interactive initialization of the multilayer perceptron

نویسنده

  • Aistis Raudys
چکیده

A new multilayer preceptor initialization method is proposed and compared experimentally with a traditional random initialization method. An operator maps training-set vectors into a two-variate space, inspects bi-variate training-set vectors and controls the complexity of the decision boundary. Simulations with sixteen real-world pattern classi®cation tasks have shown that in small-scale pattern classi®cation problems, often complex classi®cation rules and non-linear decision boundaries are not necessary. However, in cases where non-linear decision boundaries are required, the proposed weight initialization method is useful. Ó 2000 Elsevier Science B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance analysis of a MLP weight initialization algorithm

The determination of the initial weights is an important issue in multilayer perceptron design. Recently, we have proposed a new approach to weight initialization based on discriminant analysis techniques. In this paper, the performances of multilayer perceptrons (MLPs) initialized by non-parametric discriminant analysis are compared to those of randomly initialized MLPs using several synthetic...

متن کامل

Accurate Initialization of Neural Network Weights by Backpropagation of the Desired Response

Proper initialization of neural networks is critical for a successful training of its weights. Many methods have been proposed to achieve this, including heuristic least squares approaches. In this paper, inspired by these previous attempts to train (or initialize) neural networks, we formulate a mathematically sound algorithm based on backpropagating the desired output through the layers of a ...

متن کامل

IDIAP Technical report

Proper initialization is one of the most important prerequisites for fast convergence of feed-forward neural networks like high order and multilayer perceptrons. This publication aims at determining the optimal value of the initial weight v ariance (or range), which is the principal parameter of random weight initialization methods for both types of neural networks. An overview of random weight...

متن کامل

Accurate Initialization of Neural Network Weights

Abstracf Proper initialization of neural networks is critical for a successful training of its weights. Many methods have been proposed to achieve this, including heuristic least squares approaches. In this paper, inspired by these previous attempts to train (or initialize) neural networks, we formulate a mathematically sound algorithm based on backpropagating the desired output through the lay...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Pattern Recognition Letters

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2000